A differential harmony search based hybrid interval type2 fuzzy EGARCH model for stock market volatility prediction

نویسندگان

  • Rajashree Dash
  • Pradipta Kishore Dash
  • Ranjeeta Bisoi
چکیده

a r t i c l e i n f o a b s t r a c t Keywords: Volatility forecasting Stock markets EGARCH type1 and type2 fuzzy-EGARCH models Functional link neural network Differential harmony search In this paper a new hybrid model integrating an interval type2 fuzzy logic system (IT2FLS) with a computationally efficient functional link artificial neural network (CEFLANN) and an Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH) model has been proposed for accurate forecasting and modeling of financial data with changing variance over time. The proposed model denoted as IT2F-CE-EGARCH helps to enhance the ability of EGARCH model through a joint estimation of the important features of EGARCH like leverage effect, asymmetric shock by leverage effect with the secondary membership functions of interval type2 TSK FLS and the functional expansion and learning component of a CEFLANN. The secondary membership functions with upper and lower limits of IT2FLS provide a forecasting interval for handling more complicated uncertainties involved in volatility forecasting compared to type1 FLS. The performance of the proposed model has been observed with two membership functions i.e. Gaussian with fixed mean, uncertain variance and Gaussian with fixed variance and uncertain mean. The proposed model has also been compared with a few other fuzzy time series models and GARCH family models based on four performance metrics: MSFE, RMSFE, MAFE and Rel MAE. Again a differential harmony search (DHS) algorithm has been suggested for optimizing the parameters of all the fuzzy time series models. The results indicate that the proposed IT2F-CE-EGARCH model offers significant improvements in volatility forecasting performance in comparison with all other specified models over BSE Sensex and CNX Nifty dataset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Stock Market Volatility Using Univariate GARCH Models: Evidence from Bangladesh

This paper investigates the nature of volatility characteristics of stock returns in the Bangladesh stock markets employing daily all share price index return data of Dhaka Stock Exchange (DSE) and Chittagong Stock Exchange (CSE) from 02 January 1993 to 27 January 2013 and 01 January 2004 to 20 August 2015 respectively.  Furthermore, the study explores the adequate volatility model for the stoc...

متن کامل

Effect of Oil Price Volatility and Petroleum Bloomberg Index on Stock Market Returns of Tehran Stock Exchange Using EGARCH Model

The present research aims to evaluate impacts of crude oil price return index, Bloomberg Petroleum Index and Bloomberg energy index on stock market returns of 121 companies listed in Tehran stock exchange in a 10 years' period from early 2006 to April 2016. First, explanatory variables were aligned with petroleum products index mostly due to application of dollar data. Subsequently, to check va...

متن کامل

An Improved Hybrid Model with Automated Lag Selection to Forecast Stock Market

Objective: In general, financial time series such as stock indexes have nonlinear, mutable and noisy behavior. Structural and statistical models and machine learning-based models are often unable to accurately predict series with such a behavior. Accordingly, the aim of the present study is to present a new hybrid model using the advantages of the GMDH method and Non-dominated Sorting Genetic A...

متن کامل

Investigating the Asymmetry in Volatility for the Iranian Stock Market

This paper investigates the asymmetry in volatility of returns for the Iranian stock market using the daily closing values of the Tehran exchange price index (TEPIX) covering the period from March 25, 2001 to July 25, 2012, with a total of 2743 observations. To this end, two sets of tests have been employed: the first set is based on the residuals derived from a symmetric GARCH (1,1) model. The...

متن کامل

The Effects of Sentiment on Market Return and Volatility and The Cross-Sectional Risk Premium of Sentiment-affected Volatility

We construct investor sentiment of UK stock market using the procedure of principal component analysis. Using sentiment-augmented EGARCH component model, we analyse the impacts of sentiment on market excess return, the permanent component of market volatility and the transitory component of market volatility. Bullish sentiment leads to higher market excess return while bearish sentiment leads t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2015